If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-5=11
We move all terms to the left:
3x^2-5-(11)=0
We add all the numbers together, and all the variables
3x^2-16=0
a = 3; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·3·(-16)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*3}=\frac{0-8\sqrt{3}}{6} =-\frac{8\sqrt{3}}{6} =-\frac{4\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*3}=\frac{0+8\sqrt{3}}{6} =\frac{8\sqrt{3}}{6} =\frac{4\sqrt{3}}{3} $
| 3(2p)+5=p | | 12=r=5 | | 9x+30+6=180 | | 9(x-7)+10=9x-52 | | 3x*7=42 | | -2-5=(x-6) | | |4x-6|=2x= | | 80^2+18^2=c^2 | | 10x+17x-6+5=-5x+5-6 | | 6(x-8)+42=6x-6 | | 7(2x+5)=3x−9 | | 8(x-5)=75 | | 17x-45=11x+9 | | -3(-4x+4)+3x-1=−28 | | 1/3(2b+9)=2/3b+3 | | y=18-2y | | 2/3×+4/5x=44 | | 3x(x-5)(2x-3)=0 | | 430=25x-10x+250 | | 25+9p=52 | | -4/3v=28 | | 50^2+b^2=30^2 | | 50-5y=22 | | -5(2x-3)=2(x-12)-9 | | 2x+x+27=180 | | 12t=50t-200 | | 20+2x=3(-x+4)-32 | | 6^2+b^2=^2 | | 5n+0=30 | | 2(x+11)=46 | | 1+2=x-4 | | 27/x=0 |